Nanomaterial-assisted aptamers for optical sensing.
نویسندگان
چکیده
Aptamers are single-strand DNA or RNA selected in vitro that bind specifically with a broad range of targets from metal ions, organic molecules, to proteins, cells and microorganisms. As an emerging class of recognition elements, aptamers offer remarkable convenience in the design and modification of their structures, which has motivated them to generate a great variety of aptamer sensors (aptasensors) that exhibit high sensitivity as well as specificity. On the other hand, the development of nanoscience and nanotechnology has generated nanomaterials with novel properties compared with their counterparts in macroscale. By integrating their strengths of both fields, recently, versatile aptamers coupling with novel nanomaterials for designing nanomaterial-assisted aptasensors (NAAs) make the combinations universal strategies for sensitive optical sensing. NAAs have been considered as an excellent sensing platform and found wide applications in analytical community. In this review, we summarize recent advances in the development of various optical NAAs, employing various detection techniques including colorimetry, fluorometry, surface-enhanced Raman scattering (SERS), magnetic resonance imaging (MRI) and surface plasmon resonance (SPR).
منابع مشابه
Molecular diagnostic and drug delivery agents based on aptamer-nanomaterial conjugates.
Recent progress in an emerging area of designing aptamer and nanomaterial conjugates as molecular diagnostic and drug delivery agents in biomedical applications is summarized. Aptamers specific for a wide range of targets are first introduced and compared to antibodies. Methods of integrating these aptamers with a variety of nanomaterials, such as gold nanoparticles, quantum dots, carbon nanotu...
متن کاملFabrication of porous silicon-based optical sensors using metal-assisted chemical etching
Porous silicon (PSi) is a versatile nanomaterial which has been utilized in several applications such as optical switching, drug delivery and sensors since its discovery in 1991. This material has been extensively investigated as an optical sensor due to its high surface area, high sensitivity and variety of optical transduction possibilities, e.g. changes in uorescence or reectance (interfer...
متن کاملPlasmonic Nanomaterial-Based Optical Biosensing Platforms for Virus Detection
Plasmonic nanomaterials (P-NM) are receiving attention due to their excellent properties, which include surface-enhanced Raman scattering (SERS), localized surface plasmon resonance (LSPR) effects, plasmonic resonance energy transfer (PRET), and magneto optical (MO) effects. To obtain such plasmonic properties, many nanomaterials have been developed, including metal nanoparticles (MNP), bimetal...
متن کاملProtein sensing and cell discrimination using a sensor array based on nanomaterial-assisted chemiluminescence.
Cross-reactive sensor arrays, known as "chemical noses", offer an alternative to time-consuming analytical methods. Here, we report a sensor array based on nanomaterial-assisted chemiluminescence (CL) for protein sensing and cell discrimination. We have found that the CL efficiencies are improved to varied degrees for a given protein or cell line on catalytic nanomaterials. Distinct CL response...
متن کاملFabrication of a SnO2-Based Acetone Gas Sensor Enhanced by Molecular Imprinting
This work presents a new route to design a highly sensitive SnO2-based sensor for acetone gas enhanced by the molecular imprinting technique. Unassisted and acetone-assisted thermal synthesis methods are used to synthesis SnO2 nanomaterials. The prepared SnO2 nanomaterials have been characterized by X-ray powder diffraction, scanning electron microscopy and N2 adsorption-desorption. Four types ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biosensors & bioelectronics
دوره 25 8 شماره
صفحات -
تاریخ انتشار 2010